Smart Door Lock: Exploring Embedded Machine Learning for ISU Curriculum

By: Frankie Mago & Hailey Lucas

Technical Application

- Smart Door Lock
- Real world application
- Modules
 - Machine Learning Model
 - Circuit
 - Locking mechanism

Machine Learning Functionality

- Our model utilizes machine learning in the form of a keyword spotter.
 - There are two keywords we have chosen, House and Marvin. This means it should be able to identify one of four categories of words: House, Marvin, Background noise, and unknown noise.
 - Once our arduino hears the correct keyword, it will respond by operating a mechanical mechanism that either locks or unlocks a door.

Embedded Platform

- Arduino platform
- Arduino Nano 33 BLE Sense
 - SRAM: 256 KB
 - Flash Memory: 1 MB
 - Pulse Width Modulation
- Size

Quantized (int8) 📩	RAM USAGE	LATENCY
	6.5K	1 ms
	FLASH USAGE	ACCURACY
This optimization is recommended for best performance.	37.6K	87.2%

Machine Learning Workflow

- To utilize machine learning in the form of a keyword spotting model, we first need to generate features.
 - The model takes a spoken word as an input, and computes its MFCCs (Mel Frequency Cepstral Coefficients).
 - The output is a spectrogram of the mel-spectrogram of each spoken word. In this form, machine learning can learn to identify patterns in the keywords.

Machine Learning Workflow Cont.

- Once MFCCs are computed, they are fed into a neural network.
 - Our neural network uses 1D convolution across the MFCCs, outputting features of the MFCCs into a 1D array.
 - From there arrays are further downsampled into an array half the size, through maxpooling. Max pooling takes the maximum value for each window and outputs that into a new array.
 - After performing this multiple times, multiple arrays are flattened into one final array, which is fed into a Softmax function, which is what actually classifies the word into one of the preset categories. This is where it identifies the spoken keyword.

